_images/rts2-mon_turn_on.png
serip)
enabl
acqusition_ok
acqusition._failed
current.
current_sel
current_nane.
current_tups
cbsid

auto_loop
default_auto_loop
next

next_nane.

next_ids
next_nanes
next_start
next_end

next planid
next_hard

next_qid
next_renaved_ids
next_renoved.nanes|
next_renoved._tines|
next_renaved_uhy
next_renoved_aid
next_executed.ids
next_executed_nane|
next_executed_tine
next_executed_aid
next _queing
next_skip_below

i
queve 5001

EXEC +000 queve 6001

5000
5000
Capella
0

13

true
true
5000
Capella

5000 6001,
Capella Fonalhaut
ur
uw
11
23

12:31:23,164] 1 |SD 60 seconds tiner: 72
12:31:33.167 | 1|00 end exposure for EXEC

12:31:33.214|1 | £0 starting 45 exposure for
12:31:33.263 1|0 readout 200000 pixels in

12:32:18,247|1|C0 end exposure for EXEC
12:32:18.303] 1| £0 starting 45 exposure for
12:32:18.351 1|0 readout 200000 pixels in

r EXEC!
(2036195, 314301 pixels per second, transf|

r EXEC!
(1947361, 266380 pixels per second, transf|

_static/plus.png

_images/rts2-mon.png
T _1n50-
Tongitude +627 00 00,00

Latitude +37 30 00,00
norning_off true
morning_standby true
required_devices

Failed devices £l
weather_reason CUP; sone centrald are not connected
next,_state_change | 2012-03-10T12:13:56,000 CST (35n 25,386s)
next_state 3 night.
night_horizon ~10 00 00,00
day_horizon +00 00 00,00
evening_tine 300
norning_tine 1500
night_start 2012-03-10T12:13:56,000 CST (35m 25,386s)
night_stop 2012-03-10T22:02:40,000 CST (10:24:09,386)
sun_alt. ~02 47 26,58

sun_az +035 03 14.81

sun_rise 2012-03-10T22:49:55,000 CST (11:11:24,386)
Sun_set. 2012-03-11T11:25:12,000 (ST (23:45:41.386)
noan_alt ~31 01 08,28

oan_az +162 01 13,13

Lunar_phase +113 30 04,31

Lunar_Linb 033 27 14.25

noan_rise. 2012-03-10T17:54:08,000 CST (6:15:37,386)
noan_set 2012-03-11708:17:30,000 CST (20:38:59,386)
dusk 2012-03-10T11:38:20,000 CST (~10s)

night. 2012-03-10T12:13:56,000 CST (35m 265)

dain 2012-03-10T22:02:40,000 CST (10:24:10,000)
narning 2012-03-10T22:54:03,000 CST (11:15:33000)
day 2012-03-10T23:24:58,000 CST (11:46:281000)
eventng 2012-03-11T11:15:53,000 CST (23:37:29,000)
dusk. 2012-03-11711:20:53,000 CST (23:42:29,000)

11:37:30.475)

50 60 <cconds tiner: 150

11:33:30,437 15D 60 seconds tiner: 132
11:34:30.445 1 |SD 60 seconds tiner: 144
11:35:30.455 1 | S0 60 seconds tiner: 156
11:36:30.450 1 | SD 60 seconds tiner: 168

_images/rts2-mon_queue_targets.png
cbsid

next

soript
enabled
acqusition_ok 0
acqusition._failed 0
current.

current_sel 5000
current_nane. Capella
current_tups []

next_executed.ids
next_executed_nane|
next_executed_tine
next_executed_aid
next _queing
next_skip_below

NG # UAIT TR
count. 1

true

5000

14

auto_loop true
default_auto_loop true

5000

next_nane. Capella

next_ids 5000 6001,
next_nanes Capella Fonalhaut
next_start

next_end

next planid
next_hard

next_qid
next_renaved_ids
next_renoved.nanes|
next_renoved._tines|
next_renaved_uhy
next_renoved_aid

i
queve 5001

EXEC +000 queve 6001
12:37:24.058] i centrald State suitched to ready nisht by petr

12:37:34,053 i | centrald State changed fron HARD OFF to ready night description petr
12:37:34,060 1 |CUP starting to open the dome.

12:37:34.061 1 | SEL. selector assunes nisht uill end at 2012-03-10122:02:40,000 CST
12:37:34,170 |1 SEL cannot. find ualue ‘nodel_step_tupe’ in section 'cbservatory’,
12:37:34.207 1| SEL selecting fron autonatic selestor 1

12:37:43.805 1 |FO changing Focuser position to 0,000000

12:37:43.805 1 |FO focuser noved to 0,000000

12:37:43,803 | | EXEC Target Capella (5000) is at 2012/08/10 17:37:43,000 UT unobservab

_static/ajax-loader.gif

_static/up.png

_static/comment.png

_static/down.png

_images/rts2-mon_disable_selector.png
contr[[infotine 2012-03-10T11:58:29,532 CST (= 1n 45, 225)

o rext_id 1

P [l nextZai -1

EXeC [[| next_started False

Fo selest until 2012-03-10T22:02:40,000 CST (10:02:25,445)

16p (1" aueve _select_unti1 CST (na (nan))
rext_tine. 2012-03-10T12:00:10,317 CST (- 3.,6375)
interrupt False
idle_select. 0

hi_idle select | trus 5,
LeP|
statu| (M queue_only False

Flat_sun_nin -007 00 00,00
Flat_sun_nax -005 00 00,00
night_disabled_tup FF
quevi_nanes manual plan sinul
Last_aueue autonatic

nanual_ids
nanual nanes
nanual start.
nanua] end

nanual planid
nanual bard

nanual id

manua] renoved_ids|
manua] renoved_nan
manua] renoved_tin
nanua] renoved_uhy
nanua] renoved_aid
nanua] executed_id
nanua] executed_na
nanua] executed_t1
nanua] executed_ai

iy o

rts2.html

 Navigation

 		
 index

 		BORAT RTS2 Manual 0.5 documentation »

RTS2 Implementation

Primer

The software that is the puppet master for all the devices is RTS2. RTS2 was
written by Peter Kubanek.

A slight introduction into RTS2 is necessary. RTS2 handles all the high and low
level working of an autonomous telescope. The high functions include scheduling,
observations, and more interesting stuff such as automatic focusing. It also plays
the low level role by talking with the hardware directly or via a prebuilt driver.

While RTS2 may seem complex, it is actually pretty intuitive. Though it is a large
system, do not be afraid to take a peak at the code. The sourceforge website
also contains a doxogen documentation that will help to understand the source code.

It is important to make note that BORAT is running on svn revision 11782.
Hopefully a stable branch will be cut soon, so far this revision seems stable.

Big Picture

RTS2 works by having several, actually many, programs together, more than
can talk to each other. Each program/service talks through a central controller known as
centrald.

Centrald is the first program to be ran when the RTS2 service is started.
Centrald is the hub for communication. It takes commands sent from other
programs, like devices, and passses them along.

The programs that communicate with RTS2 can be device drivers or high function
programs like scheduler and target selection. Each of these programs have to
inherit an interface provided from rts2. These interfaces can be telescope,
sensor, camera, dome, focuser, and more. BORAT focuses mainly on the essential
devices just listed.

In short, that is the big picture for RTS2. As with many things the devil is in
the details.

Devices

All the BORAT drivers, except the LX200, filter wheel, and CCD, were
written at MSU. We tried to comment the shit out of them, so someone else can
use/improve/recycle them if needed.

On startup of the RTS2 service, certain drivers are called. Which drivers and
options are located at /etc/rts2/devices.ini.

Dome

The dome driver is pretty self explanatory. Shoot some code over the serial
connection and
wait for replies. Look in the chapter Hardware for details on the
protocol. The driver is called rts2-dome-ahe.

Weather Sensor

The weather sensor is built on the open source driver provided by
the manufacturer,
Cyanogen. The RTS2 weather sensor driver connects the driver to RTS2. Pretty
simple stuff. More details on calibration in Hardware. The weather sensor
driver is called rts2-sensord-boltwood.

Focuser

This is by far the most pain-in-the-ass driver to date. Quite frankly I hate
it with the passion of 1,000 burning suns. It works, that is all that matters.
The focus driver is called rts2-focusd-ez4axis.

 © Copyright 2014, Lee Hicks, Mike Reed, Matt Thompson.
 Created using Sphinx 1.2.

_images/rts2-mon_ignore_day.png
auto_loop
default_auto_loop
next

next_nane.

next_ids
next_nanes
next_start
next_end

next planid
next_hard

next_qid
next_renaved_ids
next_renoved.nanes|
next_renoved._tines|
next_renaved_uhy
next_renoved_aid
next_executed.ids
next_executed_nane|
next_executed_tine
next_executed_aid
next _queing
next_skip_below
next_test_canstr
next_renove_exeout,
next_enabled
ing_id

do_darks
Flats_done

arb_sep_linit
arb_nin_sep

rding # UAIT TRIG

ld run in daut i

operations.html

 Navigation

 		
 index

 		BORAT RTS2 Manual 0.5 documentation »

RTS2 Operation

Operations

The state of BORAT is close to its final state. With each fix, the
commands required to run an observation is less. At some point, it will
almost run itself, and that point is close.

Preparations

If BORAT has already been running skip to next section.

The first main step to running the observatory with everything shutdown is to
bring everything back up. First thing to check is power. Log into the webswitch
with your favorite browser.

Make sure the required devices such as telescope, CCD, focuser, etc
are powered and turned on.
Next step is to start up rts2 itself. Log into BORAT via bakerobs.limatech.net.
Once logged in stop rts2 to make sure no remaining service is active.:

mr337@borat: sudo service rts2 stop
 * Stopping centrald daemon rts2-centrald [fail]

When stopping the service you may get a bunch of text that looks like a stack
trace. This is OK and is not something to be worried about. I prefer to run
the above command several times till I receive the above output.

The next step is to start rts2. This is done with the above command by replacing
stop with start.:

mr337@borat: sudo service rts2 start
* Starting RTS2 centrald daemon on port 617 rts2-centrald [OK]
* Starting C0 rts2-camd-dummy [OK]
* Starting T0 rts2-teld-dummy [OK]
* Starting W0 rts2-filterd-dummy [OK]
* Starting F0 rts2-focusd-dummy [OK]
* Starting CUP rts2-cupola-dummy [OK]
* Starting SD rts2-sensor-dummy [OK]
* Starting IMGP rts2-imgproc [OK]
* Starting GRBD rts2-grbd [fail]
* Starting EXEC rts2-executor [OK]
* Starting SEL rts2-selector [OK]
* Starting XMLRPC rts2-xmlrpcd [OK]

The output of starting rts2 should be similar to above. There should only be device
that fails, that is normally rts2-grbd. Again do not panic we don’t use that.

Now with RTS2 started the next step is adding targets and running the beast.

RTS2 Preparations

Currently BORAT is not ready to be ran by itself so we have to tell rts2 we want
to run manually. This is achieved by disabling the target selector (SEL)
and by telling the executor (EXEC) to ignore daylight.

First start by opening rts2-mon with the command rts2-mon

[image: _images/rts2-mon.png]
There are three panes, the left pane is all the devices, the right pane is the
details of the device, and the bottom pane is the LOG to let the user know what
is actually happening. Info(green), debug(blue), and error(red) messages are
printed in real time.

On the keyboard use the tab key to move between the panes. Use the arrow
keys to move up and down the list. Use the enter key to modify the values.
Only items that have a W on the line can be modified.

Now we must turn off the selector. Use the arrow keys to move down to SEL. Once
highlighted press tab. Move to the item selector_enabled, press
enter and select false.

[image: _images/rts2-mon_disable_selector.png]
Now press tab to move back into the device list. Select the device called
EXEC. Press tab to move into the options for this device. Find the option
ignore_day which is near the bottom. We want that value to be true.

[image: _images/rts2-mon_ignore_day.png]
At this point you may ask why we would want this. This ignore_day setting
is a little tricky. You can force the rts2 executor to execute a target during the
day. Of course this isn’t something we want to do. The flip side to this setting
is during night the executor will ignore commands given until set true. So it
actually works as a switch to allow user commands or selector commands. It should
be labeled, ignore_forced_commands.

This should be all the preparation work for forcing targets. Once
the system is properly running autonomously, this
section will be unnecessary as the selector will automatically select targets.

Targets

RTS2 uses targets to drive the telescope. Targets are stored in a database and can
be queried, added, removed, and modified. This is all done through rts2-xxx commands.

RTS2 stores targets in the database. To look at the targets available use the command
rts2-targetlist.:

mr337@borat: rts2-targetlist
2012-09-10T12:03:13.894 CST rts2-targetlist 2 cannot find value 'model_step_type' in section 'observatory'.
2012-09-10T12:03:13.931 CST rts2-targetlist 1 there aren't any calibration targets; either create them or delete target with ID 6
1 d nan nan +00:00 nan nan nan transiting Dark frames
2 f 20:23:55.787 +26:19:34.91 -02:12 1.15 +60 00 00.00 282 11 01.68 rising flat target
3 o 00:00:00.000 +00:00:00.00 -05:48 nan +02 19 48.31 271 47 21.18 rising Focusing frames
4 m 18:07:33.214 -10:47:53.53 +00:04 1.50 +41 41 30.39 001 22 48.33 transiting Default model
6 c 00:00:00.000 +00:00:00.00 -05:48 nan +02 19 48.31 271 47 21.18 rising null
7 p 18:11:44.997 +37:30:00.00 -00:00 1.00 +90 00 00.00 180 00 00.00 transiting Master plan
10 W nan nan +00:00 nan nan nan transiting Cannot find any Swift FOV
11 I nan nan +00:00 nan nan nan transiting Cannot find any INTEGRAL FOV
6000 O 05:16:41.520 +45:59:50.93 -11:04 nan -05 35 26.11 189 33 35.63 rising Capella

For example, let us look at target Capella with target id of 6000. Use the rts2-targetinfo
command to get the details of the target.:

mr337@borat: rts2-targetinfo 6000
6000 O 05:16:41.520 +45:59:50.93 -10:55 nan -05 16 11.69 191 05 57.94 rising Capella
 C0:'C0.binning=2 for 20 { E 10 }'
 |-- expected light time: 3m 20s # images 20
 \-- expected duration: 3m 20s

The important information using rts2-targetinfo is it also displays the script that rts2
will execute when the target is executed. Currently the script is set to the default for each target.

For another example let us say we want to take one hundred
45 second exposures. We use the command rts2-target
to make script modifications. Let us change the script for Capella.:

mr337@borat: rts2-target -c C0 -s 'for 100 { E 45 }' 6000

mr337@borat: rts2-targetinfo 6000
 6000 O 05:16:41.520 +45:59:50.93 -10:51 nan -05 06 36.56 191 47 20.22 rising Capella
 C0:'for 100 { E 45 }'
 |-- expected light time: 1:15:00.000 # images 100
 \-- expected duration: 1:15:00.000

Here is a couple more examples:

I want to take 50 exposures using the BG40 filter, which I think is in filter position 7.:

rts2-tartget -c C0 -s 'filter=BG40 for 50 { E 10 }'

I want to take 500 images, in each the B and I filters, using 20 and 35 second exposures,
respectively, but want it to cycle between them?:

rts2-target -c C0 -s "for 500 { filter=BF40 E 20 filter=I E 35 }"

I want to take 100 5 second exposures, in each filter in the filter wheel starting C filter.:

filter=C for 100 { E 5 filter+=1 }

Once the target was modified we ran rts2-targetinfo on the target and the script is
now updated. The rts2-target command has other functions like enabling and disabling
targets.:

mr337@borat: rts2-target 6000
 e .. Enable target(s)
 d .. Disable target(s)
 o .. List observations around position
 t .. List targets around position
 n .. Choose new target
 s .. Save
 q .. Quit
Your selection:

If we can’t find a target in the list we simply add one. Adding targets is quite easy.
The command rts2-newtarget will almost walk you through the process. Here is
a terminal log of adding a target.:

mr337@borat: rts2-newtarget
Default values are written inside []..
Target name, RA&DEC or anything else []: 22:57:39.1 -29:37:21.1
Target name, RA&DEC or anything else: 22:57:39.1 -29:37:21.1
 s .. Save
 q .. Quit
 o .. List observations around position
 t .. List targets around position
Your selection:s
Target ID (1 to 49999) [new id]: 6001
Target ID (1 to 49999): 6001
Target NAME [RTS2225739.100-293721.10]: Fomalhaut
Target NAME: Fomalhaut
Created target #6001 named Fomalhaut on J2000.0 coordinates 22:57:39.100 -29:37:21.10
 horizontal -01 48 45.02 306 48 09.63

The target is now added so it will show up in rts2-targetlist output and
can be modified with rts2-target command. For more information about any
of the rts2-xxx command use man.

Running the Beast

At this point hopefully you have the observatory in order and targets to observe.
If so, we can actually queue some targets.

First thing needed is to set the rts2 to the ON mode. RTS2 has three states,
Off, Standby, and On. Off and On are self explanatory, but Standby is what
happens when the telescope encounters bad weather or daylight.

Turn on rts2 by pressing F9 while in rts2. In the top left you should see a
drop down menu appear. Arrow key to the right once to get the the States menu.
Select On and press enter, you will be prompted to confirm, select yes.

[image: _images/rts2-mon_turn_on.png]
Once rts2 is set to On, check the log to make sure nothing is preventing it
from commencing operations. Things like bad weather, or if a device has failed,
will prevent rts2 from going to state On.

Now let us queue some targets. Go to EXEC and tab to get into the details
of the device. When in the device pane you can also give the device direct commands. For
this example we will be using the now and queue command.

We will force the executor to execute target 6000 and queue 6001. In the pane
simply type now 6000 and press enter. Now type queue 6001 and press
enter. You should now see something that looks close to this.

[image: _images/rts2-mon_queue_targets.png]
For now ignore the red error in the log as I just picked a random star. Ignoring
this and assuming all hardware is happy and no device is blocking operation,
such as the weather station, the telescope will slew to the target and start taking images.

This method is so much of a forced or manual running of BORAT. It completely overlooks
the startup procedure of fan cooling, ccd cooling, and flats/biases. Also running this
way will not execute the shutdown procedures either. For now this is a testing procedure
set.

Images taken with this method should located under /Data/images/targetid/trash.

 © Copyright 2014, Lee Hicks, Mike Reed, Matt Thompson.
 Created using Sphinx 1.2.

_static/file.png

borat.html

 Navigation

 		
 index

 		BORAT RTS2 Manual 0.5 documentation »

Server

The server is the heart of BORAT. It pretty much does everything except convert
AC to DC for the devices. Nuff said here

Deployment

The server is a HP Proliant G7 introduction server. It has performance, and stability
while being on the low side of enterprise servers. The G7 has plenty room for expansion
of memory, hard drives, and extra CPU. For all intents and purposed we nicknamed
the server BORAT.

BORAT is installed with x86_64 Ubuntu 12.04 server. It was chosen because Ubuntu
provides stable releases and have long term support. RTS2 was also developed on
Ubuntu, so that is a benefit.

BORAT is deployed with large hard drives for temporary image storage prior
to uploading to SDBV at MSU. The hard drives are build together using software RAID
10. That is the first two hard drives are in RAID 1 and the last two hardrives
mirror the first two hardrives (in the hard drive bays) making it RAID 10.
This is done with software so there is some maintenance that needs to be done to
ensure proper operation.

Server Hardware

RAID

As mentioned the server uses a software RAID to group the hard drives together.
Software RAID is deployed with mdadm. mdadm functions to create,
add, modify, grow, and manage the software RAID. A quick check of how the RAID
is doing is to run the command cat /proc/mdstat:

lhicks@borat:/home/lhicks# cat /proc/mdstat
Personalities : [raid10]
md0 : active raid10 sda1[0] sdd1[3] sdc1[2] sdb1[1]
 1435542528 blocks super 1.2 512K chunks 2 near-copies [4/4] [UUUU]

or more details:

lhicks@borat:/home/lhicks# cat /proc/mdstat
Personalities : [raid10]
md0 : active raid10 sda1[0] sdd1[3] sdc1[2] sdb1[1]
1435542528 blocks super 1.2 512K chunks 2 near-copies [4/4] [UUUU]

unused devices: <none>
root@borat:/home/lhicks# mdadm --detail /dev/md0
/dev/md0:
Version : 1.2
Creation Time : Thu Jan 26 22:36:07 2012
 Raid Level : raid10
 Array Size : 1435542528 (1369.04 GiB 1470.00 GB)
Used Dev Size : 717771264 (684.52 GiB 735.00 GB)
 Raid Devices : 4
 Total Devices : 4
 Persistence : Superblock is persistent

 Update Time : Fri Apr 13 16:58:17 2012
 State : active
 Active Devices : 4
 Working Devices : 4
 Failed Devices : 0
 Spare Devices : 0

 Layout : near=2
 Chunk Size : 512K

Name : borat:0 (local to host borat)
 UUID : 4576b0da:e50a581c:f9dc6a63:d4d3d45c
 Events : 151

 Number Major Minor RaidDevice State
 0 8 1 0 active sync /dev/sda1
 1 8 17 1 active sync /dev/sdb1
 2 8 33 2 active sync /dev/sdc1
 3 8 49 3 active sync /dev/sdd1

All the U are good things. We don’t want to see F which means,
failed. If any of them say F, the hard drives will probably have
to be replaced and introduced into the RAID.

Serial Card

The HP G7 only comes with a single DB9 serial port. This is common for new
machines to not even have any or maybe a single one like the G7. Our setup
requires at least two serial ports.

		LX200GPS Telescope

		AHE Dome Controller

		240V UPS

In reality we only really care about the first two items. There is a 120V
UPS for other devices that we monitor via USB. In the future we might add
the 240V UPS to NUT but currently it is not needed so we only need two serial
ports. We added a PCIe-> Serial card. This card required drivers to be
build and the driver installed.

Instructions and source can be found in the git repo under hardware/serial_card.
Make sure you read them and it will save you loads of time. Especially the parts
written by Lee Hicks.

Software

BORAT requires a lot of software in order to run all the connected devices.
The largest part of software is RTS2 itself but there are many other smaller
packages that support RTS2.

Drivers

All devices that RTS2 operates excluding the LX200, CCD and filter wheel were
written here at MSU.

Hardware

BORAT obviously requires more hardware than just a server to collect images. BORAT
has around 6 main hardware pieces that are controlled and perform all the operations.

We have been blessed with a 7 foot AstroHaven Enterprice (AHE) Dome. By blessed, I mean been given
a white elephant. The problem with this dome is it is almost 100% undocumented,
and quite frankly a piece of shit that fails all too often.

The 7 foot AstroHaven dome assembly consists of a fiberglass dome, two motors, two 220v polarity
switches, magnetic switches, and a controller. The only piece one really needs
to care about is communicating with the controller. The rest of the components
are fairly dumb devices and work very well.

RTS2 has a driver for the AstroHaven dome. The original controller had a simple
protocol which worked very well. The new controller
has a new feature that is a heartbeat. This is done by the dome controller sending
a status character (values are provided below) every two or three seconds giving the status
of the dome. This works well since the state of the dome doesn’t need to be
guessed or captured since the heartbeat indicates the current state.

This methodology makes writing good serial code a pain since
communicating with the dome has random heartbeat characters in it. So
the RTS2 AHE driver has a lot of code looping
over heartbeat character till a response character is encountered.

Also, the controller does not buffer commands
or block while a command is processing. For example if the driver issues an open
A leaf command, the controller will process any open or closing command for 1
second. The result is that the dome leaf would move for 1 second and then stop.
To produce smooth openings/closures, it would be desirable to submit stacked
commands, which would be operated upon one after the other until the dome
reaches the fully open or closed state. Unfortunately, this is not how the controller
works. Rather, instead of queueing commands, the controller halts what
it is doing and then processes the subsequent command. This results in a
jerky motion that is probably hard on the motors and the fiberglass leaves.
For this reason the RTS2 AHE dome driver, unfortunately, sleeps for around half
a second before issuing the next command.

This should be a good warning as to some problems encountered while developing
a simple driver and, more importantly, give answers to the question, “why did
he program it like this?”.

Without further ado here is a list of the undocumented protocol that AHE decided
to use

Commands to open and close dome

		Send
		Command
		Ack

		A
		Open
		a

		A
		Close
		A

		B
		Open
		b

		B
		Close
		B

Acknowledgement of open and commands

		Send
		Command
		Ack

		A
		Opened
		x

		A
		Closed
		X

		B
		Opened
		y

		B
		Closed
		Y

Heartbeat values

		Send
		Command
		Ack

		AB
		Open
		3

		A
		Open, B Closed
		2

		B
		Open, A Closed
		1

		AB
		Closed
		0

The RTS2 dome driver is located in the borat repo hardware/dome. It is also
pushed publicly to the svn of RTS2 and is located in the RTS2 root directory
in src/dome/. Any changes or fixes, please update our git repo and svn repo.
You will need a sourceforge account and Petr Kubanek would have needed to
added you as a developer to the project. Simply email him.

One last note: If the dome is giving any problems in the BORAT repo,
under hardware/dome, a python script called dome.py which is a standalone
program for opening and closing the dome.

In BORAT’s mounted orientation, the north dome leaves are “B” and the south
dome leaves are “A”.

Telescope

The Telescope is a Meade 16’’ LX200GPS tube on a fork mount. Everything from
the protocol to the hardware seems to never work right. A lot of love, sweat,
and cursing has been invested into making the thing work halfway correctly.

In the last few months, at the time of writing, the LX200 RTS2 driver has been
copied and modified creating a LX200GPS driver. The LX200 protocol has changed
very little between LX200 and LX200GPS. The main difference between the two is
the LX200GPS driver puts the telescope to sleep within standby mode.

Weather Sensor

The weather sensor at BORAT is an all-in-one device. It does cloud detection,
temperature, wind speed, humidity, and has a rain sensor. Cyanogen, the manufacturer,
produces an open source driver that we have written an RTS2 interface for.

Cloud detection is the most important function the weather sensor has. Primarily becase
if there are clouds, there is a chance of rain, which would devastate our little setup.
Because of this risk, always check, via skycam, to see if the sky conditions match what RTS2 is
telling you. If not, you will need to make modifications.

The cloud sensor determines the cloud condiition by taking the sky temperature and
ambient temperature and subtracting them. From here the weather sensor can make an educated guess
about the cloud conditions. This is the only part of the weather sensor that requires
calibration.

How does one calibrate the system? Simply using a tool in the cloud driver provided
by Cyanogen. The command line tool is called bwcs_test and is excellent for
working and testing the cloud sensor. The tool will also dump raw output of all the
sensors and their respected values, such as cloud condition.

Keep in mind that calibration of the weather sensor is done on the sensor ITSELF and NOT
in the RTS2 driver. This means that the weather sensor will actually make the call
if the sky is clear, cloudy, very cloudy. The RTS2 driver simply reads these values
and informs RTS2 about them.

Here is a small excerpt of calibrations:

./bwcs_test

:open /dev/boltwood
// setT command will set the values for determining condidtion
// setT <CloudyTemp(C)> <Very Cloudy Temp(C)> <Too Windy (MPH) <Wet Sensor> <Day Sensor>
:setT -10 0 20 12 100
//call readLoop to implement the values
:readLoop

//press q to quite

Once done, the new values should start being used. Test and make sure. I had problems
with the sensor not taking the new values. These values are tested again with the SkyMinusAmbient
keyword when reading raw values from the sensor.

Security

THE BELOW IS NOT EVEN CLOSE TO BEING CURRENT, NEEDS UPDATING

BORAT should have an alarm system to ward off vandals or thieves. An alarm package
to cover our requirements would be expensive. This led us to
assemble an alarm package with multiple components. The dome is surrounded
by a 6’ privacy fence, thereby isolating our external environment.
The alarm system then only needs to monitor within the fence.
If activity is detected, a loud audible (Darth Vader) warning will be played and
bright flood lamps will be activated to ward off persons, scare away animals,
and provide lighting for our cameras. This setup is broken into three smaller systems.

The primary method for detecting unwanted activity is an array of sensors
placed around the dome. These are passive IR sensors, which sense sudden
changes in temperature via IR radiation, which a person naturally emits.
Small animals do not emit sufficient heat to trip the sensors.
With a range of ~10 feet, it strikes a balance of detecting
positive matches such as a person near the dome while minimizing false detection
such as wildlife. The motion sensors are wired into series and placed around
the dome. An Arduino board is programmed to detect a voltage drop caused
by a sensor being triggered
and notify the server via USB (see Arduino section).

Our video surveillance is a combination of CCTV cameras combined with IP cameras.
This serves two purposes. The CCTV cameras are external to the dome and for
security surveillance. Our IP cameras serve a more general role of monitoring
telescope operations, yet they are also
connected with the CCTV cameras to aid in
recording inside of the dome during an alarm. The CCTV cameras are driven by
a capture card inside the server.

An open source camera suite called ZoneMinder (www.zoneminder.com)
is the heart of the surveillance system. The
ZoneMinder suite includes primitive operation such as monitoring and
recording. A bonus to ZoneMinder is that it also detects activity on any of the CCTV
live feeds. ZoneMinder is keyed to detect small amounts of pixel change in cameras to
determine activity. Any activity will put ZoneMinder in an ALARM state,
starting frame by frame recording and noting activity in logs. Since Nagios is
already, implemented it will generate a notification via a custom Nagios
plugin detailing which zone detected activity.

During nighttime observation, the CCTV camera is independent of the IR sensors.
The procedure of detection follows

		The Arduino will detect a voltage drop in the motion detectors.

		The Arduino will send a detection message to the server.

		The server will respond by notifying RTS2 of the alarm.

		RTS2 will stop any observations, noting bad exposures in FITS header and close dome immediately.

		The server will send a ON message to the WebSwitch powering the flood lamps.

		ZoneMinder will detect the sudden extra light and begin monitoring CCTV feeds for any activity and begin recording.

		Nagios will detect alarm by monitoring ZoneMinder logs thus generating a notification.

This system provides a complete monitoring solution during observation and idle
night periods. The alarm system will also be active during the day by a much
simpler method. When the dome is closed during daytime a magneto switch, placed
where two leafs meet, will be in a OPEN state. Any opening of a leaf by force
or unauthorized opening of the dome will set the switch in a CLOSED state
notifying the server via Android. Nagios notifications will be generated along
with ZoneMinder recordings.

Zoneminder

Zoneminder is a service running on BORAT. The purpose of Zoneminder is to
capture video for the security cameras and to record the video when an event
has trigger and alarm.

At time of writing, the current version of Zoneminder is 1.24. It is installed
via the package manager in Debian. Zoneminder will probably be fed updates
via the package manager so expect it to be updated over time.

BORAT is equipped with a PCIE 1x Bluecherry BC-H16480A 16 port video and audio
capture card. The settings for Zoneminder to work with the capture card is
not quite straight forward. Keep in mind this capture card only supports
the following resolutions

Also keep in mind any changes, additions, or removals may cause ZM to complain
in regards to unexpected memory requests. Ignore these messages as kernel.shmall
and kernel.shmmax have been set appropriately. The
simple solution is do a full reboot.

Zoneminder Camera/Monitor Settings

General Tab

		Name: name you wish to call it

		Source Type: Ffmpeg

		Function: Monitor

		Enabled: Checked

		Maximum FPS: 5

		Alarm FPS: 5

		Reference Image Blend: 7

Source

		Source: /dev/videoX (x is camera number)

		Source Colours: 24 bit colour

		Capture Width: 352 (see note)

		Calture Height: 240 (see note)

Bluecherry BC-H16480A Specs

NTSC

		352x240 @ 480 FPS

		704x480 @ 150 FPS

PAL

		352x288

		704x576

Motion Sensors

After failing to find a motion sensor on the market that would fit our needs we
decided to implement our own. We bought several passive infrared (PIR) sensors
off sparkfun.com. These sensors were mounted facing roughly 60 degrees apart
to cover each side of the interior fence.

The idea behind the PIR sensor is when first powered on they will calibrate to
their surroundings. Any changes in that will drop the voltage on (matt verify)
the signal line signaling something has been detected.

The PIR sensors are read using an Arduino board. The Arduino will talk
to the computer via USB-Serial on the values of the sensor. The Arduino data is
then read by the and Ardunio driver implemented in RTS2. In RTS2 the Arduino is
treated as a block device, such as the weather sensor, and if is triggered will
being shutting down the system and closing the dome protecting the contents from
possible intruders.

The Ardunio and PIR sensors are wired on a loop that runs through each box and each
sensor. They share a ground, power, and signal cable. These cables are conneted to
each sensor by a three pin stereo plug. This allows for each removal of the face-plates
with out having to solder and unsolder connections.

When removing the faceplates be careful to disconnect the sensors. The PIR sensors
are mounted in the face-plate via silicon to create a water tight seal. They are NOT
secured in any other way and can easily be removed from the plate.

Flood Lights

The flood light setup is built to work with the Arduino in preventing possible
vandalism or theft. The flood lights are more of a deterrent and provide
lighting for security cameras to record or hope to capture events.

The flood lights are all wired together and brought into a dome via an electrical
cable. The electrical cable are plugged into the WebSwitch and are turned on through
the switch. A python script located in the repo under hardware/power_web_switch/boart_power.py
will allow via CLI to turn on and off any of the electrical ports on the WebSwitch.

 © Copyright 2014, Lee Hicks, Mike Reed, Matt Thompson.
 Created using Sphinx 1.2.

intro.html

 Navigation

 		
 index

 		BORAT RTS2 Manual 0.5 documentation »

Introduction

The Baker Observatory Robotic Autonomous Telescope (BORAT) is one in a hand full
of robotic telescopes in the United States that is fully autonomous or
hopes to be. The system is built with a server running Linux as an
operating system and telescope control system called RTS2. This system,
once setup, should run the telescope fully autonomously.

This document serves as a how-to for various things. It will include
how the main systems work and their inner parts. How to do things like
maintenance and recovery. How inner systems are laid out and simple protocols.
With a little luck, it will also include a crash guide.

 © Copyright 2014, Lee Hicks, Mike Reed, Matt Thompson.
 Created using Sphinx 1.2.

_static/down-pressed.png

search.html

